Journal of Organometallic Chemistry, 235 (1982) 135–141 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ORGANOBORON COMPOUNDS

XIX *. ALKOXYDIALKYLAMINOPHENYLBORANES

R. HARRY CRAGG * and TIM J. MILLER

The Chemical Laboratory, University of Kent at Canterbury, Canterbury, Kent (Great Britain)

(Received March 26th, 1982)

Summary

The preparation and properties of a series of alkoxydialkylaminophenylboranes are reported and their ¹H and ¹³C NMR spectra discussed. The spectra indicate that there is restricted rotation about the boron—nitrogen bond in each compound studied.

Over the last few years we have been investigating the factors influencing $p_{\pi}-p_{\pi}$ bonding in aminoboranes especially the application of ¹³C to this problem. We have reported our results on fluorodialkylaminophenylboranes [2], alkylamino- and dialkylamino-diphenylboranes [3] and alkylaminodialkylaminophenylboranes [4]. In this present paper we report the results of our studies on alkoxydialkylaminophenylboranes. With the exception of the ¹H NMR spectrum of dimethylaminomethoxyphenylborane [5,6] there have been no NMR data published on this class of compound. Four methods of synthesis have been investigated for the preparation of alkoxydialkylaminophenylboranes.

High yields of the required product were obtained from the reaction between a chlorodialkylaminophenylborane and a sodium alkoxide

$$PhB \underbrace{ \begin{array}{c} NR_{2}' \\ Cl \end{array}}^{NR_{2}'} + NaOR \rightarrow PhB \underbrace{ \begin{array}{c} NR_{2}' \\ OR \end{array}}^{NR_{2}'} + NaCl \\ OR \end{array}$$

Alcoholysis of a bis(dialkylamino)phenylborane was successfully utilised to

^{*} For part XVIII see Ref. 1.

give alkoxydialkylaminophenylboranes in yields of 65-75%.

$$PhB \xrightarrow{NR_2} + R'OH \rightarrow PhB \xrightarrow{NR_2} + R_2NH$$
$$OR'$$

A further method utilises the well established redistribution reaction and involves the interaction of equimolar quantities of a bis(alkoxy)phenylborane and a bis(dialkylamino)phenylborane.

$$PhB(OR)_{2} + PhB(NR_{2}')_{2} \rightarrow 2PhB$$

$$NR_{2}'$$

Finally alkoxydialkylaminophenylboranes were obtained in yields of 70–80% from the interaction of an alkoxychlorophenylborane and a secondary amine.

PhB
$$Cl$$
 + 2R₂'NH \rightarrow PhB NR_2' + R₂'NH \cdot HCl OR

In all reactions dry conditions were utilised due to the ease of hydrolysis of the alkoxydialkylaminophenylboranes. All four methods gave good yields of the required compound. An example of each method is given in the experimental section and all yields, analysis data and boiling points for each compound are given in Table 1.

Alkoxydialkylaminophenylboranes were observed to undergo an insertion

Compound	Yield	B.P.	Analysis	(Found (cal	cd.) (%))	Ref.	Ref.
	(70)	(C/mmng)	c	н	N		
PhBOMeNMe ₂	85	40/1	66.4	8.8	8.1	5	70/4.5
			(66.3)	(8.6)	(8.6)		
PhBOMeN(i-Pr) ₂	75	60/0.3	70.6	9.0	6.1	—	_
			(71.2)	(10.1)	(6.4)		
PhBOMeN(n-Bu) ₂	65	90/0.1	72.5	10.4	5.3	—	_
-			(72.9)	(10.5)	(5.7)		
PhBOMeN(s-Bu) ₂	70	80/0.1	73.3	9.8	5.8	_	_
/			(72.9)	(10.5)	(5.7)		
PhBOMen	60	90/0.01	70.7	8.7	5.4	_	
\sim			(71.9)	(9.2)	(6.5)		
	60	90/0.01	71.2	9.3	5.6		_
			(71.9)	(9.2)	(6.5)		
PhBOEtNEt ₂	70	60/0.1	69.7	10.1	6.8	8	104/10
_			(70.2)	(9.8)	(6.8)		
PhBO-i-PrNEt ₂ a	65	62/0.1	_	_		_	_

TABLE 1
ALKOXYDIALKYLAMINOPHENYLBORANES

^a Characterised by precise mass (see text).

reaction with phenylisocyanate. The product of the reaction on alcoholysis gave the corresponding urea demonstrating that the relative migratory optitude is $R_2'N > RO$ or Ph.

$$\begin{array}{c} PhNCO + PhB \\ NR'_{2} \rightarrow \left[\begin{array}{c} OR \\ PhB \\ N-C-NR_{2}' \\ \vdots \\ Ph O \end{array} \right] \xrightarrow{ROH} PhNHCONR_{2}' \div PhB(OR)_{2} \end{array}$$

¹H NMR

At ambient temperature the ¹H NMR spectra of the alkoxydialkylaminophenylboranes exhibit isomer shifts. However $p_{\pi}-p_{\pi}$ bonding between oxygen and boron was significant enough as to reduce the degree of $p_{\pi}-p_{\pi}$ bonding between nitrogen and boron to such an extent that in some instances the peaks in the NMR spectra were either broad or about to coalesce. Figure 1 contrasts the ¹H NMR spectra of chlorodimethylaminophenylborane with that of dimethylaminomethoxyphenylborane. The methyl resonances corresponding to a methyl group *cis* and *trans* to a phenyl group, are very sharp and well resolved in the spectrum of chlorodimethylaminophenylborane but show considerable broadening in dimethylaminomethoxyphenylborane. Also in the case of diisopropylaminomethoxyphenylborane the methyl resonances are quite close to coalescence. The ¹H NMR spectra demonstrate how $p_{\pi}-p_{\pi}$ bonding from oxygen to boron and branching of the amino group result in a decrease of $p_{\pi}-p_{\pi}$ bonding in the boron--nitrogen bond. The ¹H NMR isomer shifts for the alkoxydialkylaminophenylboranes are given in Table 2.

Fig. 1. Comparison of the ¹H NMR of PhBNMe₂Cl and PhBNMe₂OMe.

Compound	Isomer shif	ts (Hz)	
	a	b	
Ph B====NMe ₂ MeO	24		
	Broad	Broad ~90	
	20		
Ph BN(CH ₂ CH ₃) ₂ i-PrO	~80		
Ph BN(CH ₂ CH ₃) ₂ EtO	~80	~40	

TABLE 2 ¹H NMR ISOMER SHIFTS FOR ALKOXY(DIALKYLAMINO)PHENYLBORANES

¹³C NMR

The ¹³C assignments for the alkoxyldialkylaminophenylboranes are given in Table 3. The assignment of resonances in the proton noise fully decoupled spectra was achieved without difficulty. The resonances assigned to the carbon atom directly bonded to boron were observed on recording the spectrum of the compound in the absence of a solvent [7]. In all cases evidence was observed in support of $p_{\pi}-p_{\pi}$ bonding about the boron—nitrogen bond. However where the doublets were broad or had coalesced it was necessary to record the spectrum at a low temperature in order to resolve all non-equivalence. The spectrum of diisopropylaminomethoxyphenylborane (Fig. 2), fully illustrates the effect of temperature.

Experimental

NMR spectra were recorded on a JEOL-PS-100 NMR spectrometer. The ¹H NMR spectra were recorded in the continuous wave mode while ¹³C NMR spectra were recorded using the F.T. mode. Tetramethylsilane was used as an internal standard and the compounds were studied as solutions in CCl₄, CDCl₃ or as neat samples. Chemical shifts quoted are correct to ± 0.05 ppm. An internal DMSO capillary lock was used when measuring the ¹³C NMR spectra of neat

Compound	т (°с)	C(1)	0	æ	ď	a	q	U	q	U	Ţ	24
Ph	1 1	136.7	132.0	127.8	127.8	37.9	54					
b B B B B B B B B B B B B B B B B B B B	0 1	0	0	0	0	34.6 83	0					
Ph []	5	138.8	130,3	127.1	126.8	47,9	23.1	52.8				
	6	0	0	0	0	42.9 125	21.2 40	0				
h h	ç	138.7	130.7	127.2	126,8	54.2	30.0	20.5	12.0	52.8		
		0	0	0	0	49.2	68.0	14.0	24.0	0		
ţ, q c	Ę	136,6	132.0	127.9	127.9	54.7	33.1	34.2	27.9	47.3	19.9	54.2
	- -	0	0	0	0	86,0	32.0	0	27,2	4 <i>3.8</i> 89.0	0'0	0
Ph (137.1	132,0	127.9	127.9	47.7	31.9	19.8	28.4	41.0	17.8	64.2
	ĥ	0	12,2	0	0	92.0	12.0	0	27.8 15.0	91.10	9'.1 9'1	0
₩ŧŎ ⁵ -	53	137.6	131.8	127.7	127.7	47.0 43 R	32.0	20,1	14.1	53.9		
MeO BN b d 2	ì	0	0	0	0	80.0	0	0	0	0		
Ph []]	Line and the second sec	137.8	130,7	127.2	127.2	41.0 98 9	15,4 15,0	66,9	24,4			
	Î	0	0	0	0	70.0	10,0	0	0			
Physical Phy	2	137,9	130.7	127.2	127.2	40.7	16.3	60,4	17.4			
		0	0	0	0	70.0	23.0	0	0			

TABLE 3. ¹³C NMR DATA OF ALKOXY(DIALKYLAMINO)PHENYLBORANES

139

(ppm) 60 50 40 30 20 10

Fig. 2. The ¹³C NMR spectra of PhB(OMe)N(i-Pr)₂.

samples and the temperature of the sample was varied by passing a stream of heated air or cold nitrogen over the probe.

Preparation of dimethylamino(methoxy)phenylborane

Bis(dimethylamino)phenylborane (3.52 g, 0.02 mol) and bis(methoxy)phenylborane (3.00 g, 0.02 mol) were mixed together and set aside for 3 h. The mixture was then distilled under reduced pressure to give dimethylamino-(methoxy)phenylborane (2.77 g, 85%), b.p. 40°C/1 mmHg. (Found: C, 66.4; H, 8.8; N, 8.1. C₉H₁₄NOB calcd.: C, 66.3; H, 8.6; N, 8.6%).

Preparation of diethylamino(i-propoxy)phenylborane

Bis(diethylamino)phenylborane (4.6 g, 0.02 mol) was cooled to -78° C and dry isopropanol (1.2 g, 0.02 mol) was added slowly with stirring. The mixture was set aside to attain room temperature and then gently warmed. Diethylamine (1.46 g, 100%) was evolved. Distillation of the residue under reduced pressure gave diethylamino(i-propoxy)phenylborane, (2.85 g, 65%), b.p. 62°C/0.1 mmHg. The precise mass of the parent ion was determined. (Found: 219.1794223. C₁₃H₂₂NOB calcd.: 219.1794362. Error 0.06 ppm).

Preparation of diisopropylamino(methoxy)phenylborane

Di-i-propylamine (10.1 g, 0.1 mol) was dissolved in 40/60 petroleum ether (150 cc) and cooled to -78° C. Chloro(methoxy)phenylborane (4.64 g, 0.03 mol), dissolved in 40/60 petroleum ether (50 cc), was added dropwise with stirring. The mixture was refluxed for 3 h. Di-i-propylammonium chloride (4.13 g, 100%) was filtered off and the solvent removed from the filtrate to yield a clear mobile liquid. Distillation of this gave di-iso-propylamino(methoxy)-phenylborane (6.93 g, 75%), b.p. 60° C/0.3 mmHg. (Found: C, 70.6; H, 9.0; N, 6.1. C₁₃H₂₂NOB calcd.: C, 71.2; H, 10.0; N, 6;4%).

Preparation of diethylaminoethoxyphenylborane

Chlorodiethylaminophenylborane (5.8 g, 0.03 mol) in petroleum ether (60 cc 40/60) was added slowly to sodium ethoxide (2.04 g, 0.03 mol) in petroleum ether (30 cc) with stirring. The mixture was refluxed for 3 h after which sodium chloride (1.68 g, 94%) was filtered off. The solvent was removed from the filtrate and the residue on distillation afforded diethylaminoethoxyphenylborane (4.35 g, 70%) b.p. 60° C/0.1 mmHg. (Found: C, 69.7; H, 10.1; N, 68. C₁₂H₂₀NOB calcd.: C, 70.2; H, 9.8; N, 6.8%).

Interaction of dimethylaminomethoxyphenylborane and phenylisocyanate

Dimethylaminomethoxyphenylborane (1 mol) and phenylisocyanate (1 mol) were refluxed in benzene for 3 h. The product of the reaction was not isolated but on alcoholysis, with n-butylalcohol, afforded 1,1-dimethyl-3-phenyl urea m.p. $127^{\circ}C$ (lit. $127-128^{\circ}C$). The identity of the urea was confirmed by ¹H NMR and a mixed melting point with an authentic sample.

Acknowledgement

We thank Dr. D. Smith for recording the spectra.

References

- 1 Part XVIII R.H. Cragg and T.J. Miller, J. Organometal. Chem., 232 (1982) 201.
- 2 R.H. Cragg and T.J. Miller, J. Organometal. Chem., 217 (1981) 1.
- 3 C. Brown, R.H. Cragg, T.J. Miller and D.O'N. Smith, J. Organometal. Chem., 217 (1981) 139.
- 4 R.H. Cragg and T.J. Miller, J. Organometal. Chem., 217 (1981) 283.
- 5 P.A. Barfield, M.F. Lappert and J. Lee, J. Chem. Soc., A (1968) 554.
- 6 P.A. Barfield, M.F. Lappert and J. Lee, Trans. Farad. Soc., 64 (1968) 554.
- 7 C. Brown, R.H. Cragg, T.J. Miller, D.O'N. Smith and A. Steltner, J. Organometal. Chem., 149 (1978) C34.
- 8 M.F. Lappert and M.K. Majunder, J. Organometal. Chem., 6 (1966) 316.